## LECTURE NOTES 2-4: THE PRECISE DEFINITION OF THE LIMIT (DAY 2)

**REVIEW:** THE PRECISE DEFINITION OF THE LIMIT:

We say  $\lim_{x \to a} f(x) = L$ , if for *every* number  $\epsilon > 0$ , there exists a number  $\delta > 0$  such that if  $0 < |x - a| < \delta$ , then  $|f(x) - L| < \epsilon$ .

Recall that we used this definition to show that  $\lim_{x \to 2} 3x + 1 = 7$ .



PRACTICE PROBLEMS:

1. Let  $f(x) = x^2$ , graphed below.



(a) Find a number  $\delta$  such that if  $|x - 2| < \delta$ , then  $|x^2 - 4| < 1$ . Use the graph to show that your answer is correct.



- (b) Find a number  $\delta$  such that if  $|x 2| < \delta$ , then  $|x^2 - 4| < \frac{1}{5}$ . Use the graph to show that your answer is correct.
- (c) How is finding  $\delta$  different if the function, f(x), is not linear?
- 2. A machinist is required to manufacture a metal cube with a volume of  $8000 \ cm^3$ .
  - (a) What side length produces such a cube?
  - (b) If the machinist is allowed an error tolerance of  $\pm 10 \, cm^3$  in the volume of the cube, how close to the ideal side length in part (a) must the machinist control the radius?

(c) In terms of the  $\epsilon\text{-}\delta$  definition of  $\lim_{x\to a}f(x)=L,$  what is:

| i. <i>x</i> ? | iii. a?        | v. <i>ε</i> ? |
|---------------|----------------|---------------|
| ii. $f(x)$ ?  | iv. <i>L</i> ? | vi. δ?        |