Lecture Notes 2-4: The Precise Definition of the Limit (DAY 2)

Review: The Precise Definition of the Limit:

We say $\lim _{x \rightarrow a} f(x)=L$, if for every number $\epsilon>0$, there exists a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta, \text { then }|f(x)-L|<\epsilon
$$

Recall that we used this definition to show that $\lim _{x \rightarrow 2} 3 x+1=7$.

Practice Problems:

1. Let $f(x)=x^{2}$, graphed below.

(a) Find a number δ such that if $|x-2|<\delta$, then $\left|x^{2}-4\right|<1$. Use the graph to show that your answer is correct.

(b) Find a number δ such that if $|x-2|<\delta$, then $\left|x^{2}-4\right|<\frac{1}{5}$. Use the graph to show that your answer is correct.
(c) How is finding δ different if the function, $f(x)$, is not linear?
2. A machinist is required to manufacture a metal cube with a volume of $8000 \mathrm{~cm}^{3}$.
(a) What side length produces such a cube?
(b) If the machinist is allowed an error tolerance of $\pm 10 \mathrm{~cm}^{3}$ in the volume of the cube, how close to the ideal side length in part (a) must the machinist control the radius?
(c) In terms of the $\epsilon-\delta$ definition of $\lim _{x \rightarrow a} f(x)=L$, what is:
i. x ?
iii. a ?
v. ϵ ?
ii. $f(x)$?
iv. L ?
vi. δ ?
